A three-phase, uncontrolled bridge rectifier is supplied from a 480 V (rms, line-to-line), 50 Hz 3-phase AC source, feeding a highly inductive load with P=50 Q

with R=50 Ω .

- (a) Plot the waveforms of the output voltage, diode currents, diode voltage and supply current.
- (b) Determine:
 - i. the mean values of the load voltage and current,
 - ii. the average and rms values of the diode currents,
 - iii. PIV of the diodes,
 - iv. the rms value of the supply current,
 - v. the rectification ratio and converter efficiency.
- 2. A three-phase, uncontrolled bridge rectifier is connected to a 220 V (rms, line-to-line), 50 Hz 3-phse AC supply. The rectifier is supplying an inductive load of R=25 Ω and L=100mH. Determine using <u>Fourier series</u>:
 - (a) the average values of the rectifier output voltage and current,
 - (b) the amplitude of the most dominant harmonic of the load voltage and current,
 - (c) the rms value of the supply current,
 - (d) the %THD of the supply current
 - (e) The supply apparent power and power factor.
- **3.** A three-phase, fully controlled bridge rectifier is connected to a 220 V (rms, line-to-line) 50 Hz 3-phase AC supply. The rectifier is supplying a pure resistive load of $R=25\Omega$. Determine:
 - (a) the required firing angle if the average output voltage is 50% of the maximum output voltage,
 - (b) the average and rms values of the load current,
 - (c) the average and rms values of the thyristor current,
 - (d) the rectification ratio and converter efficiency,
 - (e) the input power factor.

- 4. A three-phase, fully controlled bridge rectifier is connected to a 660 V (rms, line-to-line) 3-phase AC supply. The rectifier is supplying a DC load current (R=25 Ω) and a thyristor voltage drop of 1.2 V.
 - (a) Determine the mean values of the load voltage at firing delay angles (α) of: 0°, 30°, 45°, 60° and 90°.
 - (b) Plot the waveforms of the load voltage and thyristor voltages at $\alpha = 75^{\circ}$.
 - (c) Calculate the average and rms values of the thyristor current (i_{T1}) .
 - (d) Calculate the average power loss in each thyristor.